

IRIS[®] and ¹³C-Breath Tests for the Assessment of Specific Enzymatic and Metabolic Functions *in vivo*

www.kibion.com

DISCLAIMER

Please note that all substrates described in this brochure, except ¹³C-urea – Diabact[®] UBT 50 mg (registered pharmaceutical), are laboratory chemicals (also called extempore or special medicine preparations –human use). Please contact your local pharmacy for more information about how to order substrates in your region.

It is also advisable to contact the relevant medical product agency (MPA) for more precise information about the use of substrates and its accompanying responsibilities.

NOTE

The information in this brochure is based on literature references, which are believed to be correct. The possibility of mistakes or errors cannot be excluded completely. Therefore Kibion AB does not accept any legal or other liability with respect to incorrect details and their consequences.

Contents

Introduction	4
¹³ C-Urea Breath Test – Diabact [®] UBT	6
¹³ C-Aminopyrine Breath Test	8
¹³ C-Methacetin Breath Test	10
¹³ C-L-Methionine Breath Test	12
¹³ C-Sodium-Acetate Breath Test	14
¹³ C-Sodium-Octanoate and ¹³ C-Octanoic Acid Breath Test	16
¹³ C-Mixed Triglyceride Breath Test	18

Introduction

Kibion is a dynamic, world-leading supplier of simple and reliable breath tests for diagnosing the stomach ulcer bacterium *Helicobacter pylori*.

A subsidiary of the Swedish pharmaceutical company Orexo AB, Kibion was founded in 2005 to create a dedicated platform for commercializing breakthrough discoveries in the diagnosis of *Helicobacter pylori*.

Kibion together with its subsidiary in Bremen, Germany, is the present day provider of complete solutions of both diagnostic breath tests and instruments, and has attained a leading position in the testing of *H. pylori*. The tests and instruments are cost effective, reliable and easy to use in settings including the hospital, laboratory and doctor's office.

Quality

Kibion provides customers with high quality products and services.

The quality of our processes, products and services are continuously optimized and improved to meet customers' demands and needs.

Kibion AB is certified based on EN ISO 13485 – Medical Devices – Quality Management Systems – Requirements for regulatory purposes. The scope of the certificate includes development, production and distribution of IVD medical devices. The Certification was carried out by TÜV SÜD Product Service GmbH which is a globally recognized Certification Body. The EN ISO 13485 certification allows Kibion AB to further strengthen and develop its leading position as provider of breath tests for detection of *Helicobacter pylori* worldwide.

Metabolic breath tests

Non-invasive breath tests can serve as valuable diagnostic tools in medicine as they can determine particular enzymatic and metabolic functions *in vivo*. This has wide applications in the fields of gastroenterology, oncology, hepatology and nutrition control. A ¹³CO₂ breath test measures increased levels of ¹³CO₂ in exhaled breath after ingestion of a stable ¹³C isotope labelled substance and its subsequent metabolism with a specific function or enzyme as a rate limiting step. Breath samples are collected and measured, for example, with an IRIS[®] instrument, measuring the stage between ingestion by the patient of the labeled substance and its appearance in the exhaled breath.

This brochure describes the principles and general test procedures based on information in published literature for a number of tests, which are the most common in today's clinical research.

IRIS

IRIS[®] is a foremost instrument for quantitative diagnosis of breath tests. IRIS[®] employs detectors of non-radioactive ¹³C-labelled stable isotope based on infra-red technology.

The IRIS[®] Infra Red Isotope analyzer measures the ${}^{13}CO_2$ and ${}^{12}CO_2$ concentrations from sequences of breath samples and relates their ratios to the PDB- ${}^{13}C$ stable isotope standard. The reproducibility is in optimal conditions better than 0.2 δ ‰ (IRIS-Doc: 0.4 δ ‰) over a wide range of ${}^{13}C/{}^{12}C$ stable isotope ratios, and over a wide range of CO₂ concentrations in breath.

Measurements are made on breath samples as they come from the breath sample bags or tubes. No separation of water or isolation of CO₂ is required prior to analysis. Standard breath bags have a volume of 120 ml breath gas, which allows for two measurements per sample.

The IRIS[®] instrument is available in two different models, IRIS[®]-3 and IRIS[®]-Doc and can be connected to the IRIS[®]-Multisampler for high throughput testing.

¹³C-Urea Breath Test – Diabact[®] UBT

¹³C-Urea

Molecular weight: Enrichment: Labeled C-atoms: Dosage: 61.05 g/mol 99 % 1 50 mg

Test principle

Isotopically labelled urea is metabolized into carbon dioxide and ammonia by the enzyme urease which is produced by the bacteria, *Helicobacter pylori*. The available ¹³C isotope, now in the form of ¹³CO₂ diffuses into the blood to be transported to the lungs, where it is exhaled in the breath to be captured during sampling. An increased ratio of ¹³C is conclusive proof of the presence of *Helicobacter pylori* in the patient's stomach.

Application of Diabact UBT -¹³C Urea Breath Test

Helicobacter pylori is extremely common in humans, infecting around 50 % of the world's population. It is recognised as the main etiological factor for chronic gastritis, peptic ulcer and possibly also gastric malignancies. Much suffering and even death related to ulcers can be easily prevented through accurate diagnosis and appropriate treatment with antibiotics. The current challenge is to prevent a chronic *Helicobacter pylori* infection and its development to gastric cancer, as well as to understand the role of *Helicobacter pylori* in extra-gastric diseases.

Test Performance Procedure

Patient preparation

The patient should have fasted for 6 hours prior to the test and not have taken PPI for 2 weeks before the test is performed. Antibiotic treatment should have been discontinued one month before testing.

No test meal needed

With Diabact[®] UBT no test meal is necessary. Citric acid is included in the tablet and there is no need for mixing of solution; simply swallow a tablet.

Test procedure

- 1. Patient exhales into basal sample tubes (0-tubes).
- 2. Patient swallows a Diabact[®] UBT tablet with a glass of water.
- 3. After a 10-minute wait, patient exhales into sample tubes.
- 4. Samples are analysed with IRIS®-Doc or IRIS®-3.

Results and Interpretation

Diabact[®] UBT for diagnosis of *Helicobacter pylori* is a qualitative test. The result will show if the patient is infected or not infected.

The established cut-off using mass spectrometry is <1.5 $\% \delta$ value = Negative *H.pylori* status >1.5 $\% \delta$ value = Positive *H.pylori* status

The cut-off when using IRIS-3 is $1.5 \% \pm 0.2$. The cut-off when using IRIS-Doc is $1.5\% \pm 0.4$.

1. Breath into base line tubes

2. Swallow Diabact® UBT tablet

3. After a 10-minute wait, breathe into sample tubes

4. Send the tubes for analysis.

- 1. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001;345:784–9.
- 2. Correa P. Bacterial infections as a cause of cancer. J Natl Cancer Inst 2003;95:E3.
- 3. Eidt S, Stolte M, Fischer R. Helicobacter pylori gastritis and primary gastric non-Hodgkin's lymphomas. J Clin Pathol 1994;47:436–9.
- 4. Talley NJ, Vakil N. Guidelines for the management of dyspepsia. Am J Gastroenterol 2005;100:2324–37
- 5. Delaney BC, Moayyedi P, Forman D. Initial management strategies for dyspepsia. Cochrane Database Syst Rev 2005;(4):CD001961.
- 6. Malfertheiner P, Megraud F, O'Morain C, et al. Management of Helicobacter pylori infection the Maastricht IV / Florence Consensus Report. Gut 2012;61:646-664.
- 7. Wong et al. A rapid release 50 mg tablet-based ¹³C-urea breath test for the diagnosis of Helicobacter pylori infection. Aliment Pharmacol Ther 2003: 17:253-257.
- 8. Gatta et al. A rapid, low-dose ¹³C-urea breath test for the detection of *Helicobacter pylori* infection before and after treatment. Aliment Pharmacol Ther 2003:17:793-798.
- 9. Spiegel BM, Vakil NB, Ofman JJ. Dyspepsia management in primary care: a decision analysis of competing strategies. Gastroenterology 2002;122:1270–85.
- Jarbol DE, Kragstrup J, Stovring H, Havelund T, Schaffalitzky de Muckadell OB. Proton pump inhibitor or testing for *Helicobacter pylori* as the first step for patients presenting with dyspepsia? A clusterrandomized trial. Am J Gastroenterol 2006;101:1200–8.

¹³C-Aminopyrine Breath Test

¹³C-Aminopyrine

Molecular weight: Enrichment: Labeled C-atoms: Dosage: 233.29 g/mol 99 % 2 75 mg

Metabolic principle

¹³C-Aminopyrine undergoes a two-step N-demethylation by cytochrome P-450 monooxygenases including CYP2C19, CYP1A2 and CYP3A4, yielding formaldehyde and amino-antipyrine¹. The formaldehyde is further oxidized to bicarbonate and exhaled as ¹³CO₂, or deposited in the bicarbonate pool². As N-demethylation occurs exclusively in the liver with a low extraction rate, this parameter is an overall reflection of the efficiency of aminopyrine metabolism³. It is therefore a good measure of hepatic metabolic capacity, i.e. the "functional hepatic mass".

Applications of ¹³C-Aminopyrine Breath Test

The ¹³C-Aminopyrine Breath Test is very useful for quantitative assessment of liver function in conditions such as established chronic hepatitis and cirrhosis^{4,5}. For example, it can be used to quantify progression of the disease in Hepatitis C patients⁶. The patient should have fasted for 8 hours prior to the test. Smoking should also be avoided at least one hour prior to the test⁷. The patient should not drink carbonated water or soft drinks prior to the test since that might interfere with the results. In addition, oxygen supplementation should be avoided because increased oxygen content in exhaled breath can influence ¹³CO₂ measurement by NDIRS⁸.

Test Performance Procedure (see IRIS® Operating Manual for additional information).

- 1. Collect zero (basal) breath sample as described in manual.
- 2. Patient takes ¹³C-Aminopyrine (75 mg) dissolved in warm water (100 ml).
- 3. Collect additional breath samples as shown below (Table 1).
- 4. Analyze all 10 breath samples with IRIS®-3.

#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
0 min	10 min	20 min	30 min	40 min	50 min	60 min	80 min	100 min	120 min

Table 1: ¹³C-Aminopyrine Breath Test Sample Collection

Fig. 1,2: ¹³C-Aminopyrine Breath Test, Dose/h curve and % Cum Dose curve, healthy (normal) subject¹¹

Fig. 3,4: ¹³C-Aminopyrine Breath Test, Dose/h curve and % Cum Dose curve, subject with liver disease¹¹

Results and interpretation

Typical results for the ¹³C-Aminopyrine Breath Test are presented in Figures 1 to 4. The ¹³C-Aminopyrine test is very sensitive and precise, as can be seen from the very narrow "normal" range. This makes it even possible to detect patients with early stage liver disease^{6,9,10}.

For the ¹³C-Aminopyrine Breath Test, cut-off values have been established in a study with 135 patients¹¹ (see table below).

Condition	dose/hr (‰) at 30 min	% cum. dose at 120 min
Fibrosis stages 0/1/2	6.62 - 7.10 ± 2.9	9.21 - 10.06 ± 3.8
Fibrosis stages 3 / 4	2.48 - 3.13 ± 1.2	3.62 - 4.56 ± 2.0
Cirrhosis, not established	6.77 ± 2.7	9.63 ± 3.6
Cirrhosis, established	2.48 ± 1.2	3.68 ± 1.9

Table 2: Cut-off values for ¹³C-Aminopyrine Breath Test ¹¹

- 1. Armuzzi, A. et al. Review article: breath testing for human liver function assessment. Aliment. Pharmacol. Ther. 16, 1977–1996 (2002).
- 2. Perri, F., Pastore, M., Annese, V. & Andriulli, A. The aminopyrine breath test. Ital J Gastroenterol 26, 306–317 (1994).
- 3. Nista, E. C. et al. ¹³C-breath tests in the study of microsomal liver function. Eur Rev Med Pharmacol Sci 8, 33–46 (2004).
- Morelli, A., Narducci, F., Pelli, M. A., Farroni, F. & Vedovelli, A. The relationship between aminopyrine breath test and severity of liver disease in cirrhosis. Am. J. Gastroenterol. 76, 110–113 (1981).
- 5. Giannini, E. *et al.* ¹³C-aminopyrine breath test to evaluate severity of disease in patients with chronic hepatitis C virus infection. Aliment. Pharmacol. Ther. 16, 717–725 (2002).
- 6. Rocco, A. et al. 13C-aminopyrine breath test accurately predicts long-term outcome of chronic hepatitis C. J. Hepatol. 56, 782–787 (2012).
- Kasicka-Jonderko, A., Loska, D., Jonderko, K., Kaminska, M. & Błonska-Fajfrowska, B. Interference of acute cigarette smoking with [¹³C]methacetin breath test. Isotopes Environ Health Stud 47, 34–41 (2011).
- Riecke, B., Neuhaus, P. & Stockmann, M. Major influence of oxygen supply on ¹³CO₂:¹²CO₂ ratio measurement by nondispersive isotope-selective infrared spectroscopy. Helicobacter 10, 620–622 (2005).
- 9. Merkel, C. et al. Aminopyrine breath test in the prognostic evaluation of patients with cirrhosis. Gut 33, 836–842 (1992).
- 10. Urbain, D., Muls, V., Thys, O. & Ham, H. R. Aminopyrine breath test improves long-term prognostic evaluation in patients with alcoholic cirrhosis in Child classes A and B. J.Hepatol. 22, 179–183 (1995).
- 11. Merz, B. Evaluierung des Aminopyrin-Atemtests bei chronischer Hepatitis C. Hepatologie und Infektiologie, (2005).

¹³C-Methacetin Breath Test

³CH₂

¹³C-Methacetin

Metabolic principle

Methacetin is metabolized rapidly in normal subjects, being highly extracted by the liver¹, implying that the metabolism of methacetin is mainly dependent on hepatic blood flow, the latter being generally decreased in cirrhotic patients². Methacetin undergoes dealkylation by hepatic CYP1A2 to acetaminophen³ with the methoxy group being eliminated as ¹³CO₂.

Published data of previous studies suggest that the Methacetin Breath Test is a rapid and precise quantitative liver function test without any evidence of toxicities due to the small doses used, in contrast to other substrates^{4–7}.

Applications of ¹³C-Methacetin Breath Test

The liver status of patients who have been diagnosed with liver disease can be assessed or monitored non-invasively using the ¹³C-Methacetin Breath Test:

The patient should have fasted for 8 hours prior to the test. Smoking should also be avoided at least one hour prior to the test¹³. The patient should not drink carbonated water or soft drinks prior to the test since this might interfere with the results. In addition, oxygen supplementation should be avoided because increased oxygen content in exhaled breath can influence ¹³CO₂ measurement by NDIRS¹⁴.

Test Performance Procedure (see IRIS® Operating Manual for additional information).

- 1. Collect zero (basal) breath sample as described in the manual.
- Patient takes ¹³C-Methacetin (75 mg) dissolved in water (100 ml).
- 3. Collect additional breath samples as shown below (Table 2).
- 4. Analyze all 10 breath samples with IRIS®-3 or IRIS®-Doc.

Condition	Assessment
Non-alcoholic steatohepatitis (NASH) or alcoholic steatohepatitis (ASH), Fibrosis or Cirrhosis	State of evolution (correlation with Child-Pugh Score) ^{8,9}
Fibrosis or Cirrhosis	State of evolution (correlation with Child-Pugh Score) ^{8,9}
Liver tumor	Hepatic reserve
Hepatitis B or C	Hepatic reserve ¹⁰
Long-term medication e.g. anticonvulsants	Monitor hepatotoxicity
Liver transplant	Liver status of both donor and recipient ^{11,12}

Table 1: Liver diseases assessed by ¹³C-Methacetin Breath Test

#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
0 min	10 min	20 min	30 min	40 min	50 min	60 min	80 min	100 min	120 min

Table 2: ¹³C-Methacetin Breath Test Sample Collection

Molecular weight:	166.19 g/mol
Enrichment:	99 %
Labeled C-atoms:	1
Dosage:	75 mg

Fig. 1-2: ¹³C-Methacetin Breath Test, Dose/h curve and % Cum Dose, healthy (normal) subject¹⁶

Normal Max

Results and interpretation

Normal Min

In healthy subjects a peak in the exhaled Dose/h of labeled CO_2 is to be expected after 10 to 20 minutes (see Figure 1). About 30% of the administered dose is recovered as ${}^{13}CO_2$ after 120 minutes (see Figure 2). In general, the more severe the liver disease, the lower the % cum dose after 120 minutes.^{8,10,15}

The value of the maximum metabolic rate (dose/h) has been shown to be a good quantitative predictor of cirrhosis and fibrosis in chronic hepatitis C (Table 3). The % cumulative dose at 120 minutes has been shown to correlate with different stages of liver disease (Table 4).

Normal Min

% Cumulative Dose, 120 min	Indication/ Correlation
31.0 (25.9 – 38.7)	Normal
13.6 (5.7 – 22.3)	Cirrhosis, Child-Pugh Class A
3.1 (1.1 – 16.5)	Cirrhosis, Child-Pugh Class B
0.6 (-1.1 – 3.5)	Cirrhosis, Child-Pugh Class C

Table 4: Correlation of ¹³C-Methacetin Breath Test (% cumdose) with stage of liver disease⁸

		Cut-off	Sensitivity	Specificity
Liver Cirrhosis	¹³ C-Methacetin Breath Test	< 14.6 %	92.6 %	84.1 %
	Fibroindex	> 1.82	70.4 %	91.3 %
Advanced Fibrosis	¹³ C-Methacetin Breath Test	< 21 ‰	75.4 %	79.5 %
	Fibroindex	> 1.35	66.7 %	84.6 %

Table 3: Comparison of ¹³C-Methacetin Breath Test and FibroIndex as predictors of cirrhosis and fibrosis. (Adapted from Dinesen et al.¹⁷)

References

- 1. Armuzzi, A. et al. Review article: breath testing for human liver function assessment. Aliment. Pharmacol. Ther. 16, 1977–1996 (2002).
- 2. Moreno, A. H. et al. Portal blood flow in cirrhosis of the liver. J. Clin. Invest. 46, 436–445 (1967).
- Kasicka-Jonderko, A., Nita, A., Jonderko, K., Kamińska, M. & Błońska-Fajfrowska, B. C-methacetin breath test reproducibility study reveals persistent CYP1A2 stimulation on repeat examinations. World J. Gastroenterol. 17, 4979–4986 (2011).
- 4. Matsumoto, K. et al. [¹³C]methacetin breath test for evaluation of liver damage. Dig. Dis. Sci. 32, 344–348 (1987).
- Festi, D. *et al.* Measurement of hepatic functional mass by means of ¹³C-methacetin and ¹³C-phenylalanine breath tests in chronic liver disease: comparison with Child-Pugh score and serum bile acid levels. World J. Gastroenterol. 11, 142–148 (2005).
- 6. Candelli, M. et al. ¹³C-methionine breath tests for mitochondrial liver function assessment. Eur Rev Med Pharmacol Sci 12, 245–249 (2008).
- Nista, E. C. et al. ¹³C-breath tests in the study of microsomal liver function. Eur Rev Med Pharmacol Sci 8, 33–46 (2004).
 Pfaffenbach, B., Götze, O., Szymanski, C., Hagemann, D. & Adamek, R. J. [The ¹³C-methacetin breath test for quantitative noninvasive liver function analysis
- with an isotope-specific nondispersive infrared spectrometer in liver cirrhosis]. Dtsch. Med. Wochenschr. 123, 1467–1471 (1998).
 Klatt, S., Taut, C., Mayer, D., Adler, G. & Beckh, K. Evaluation of the ¹³C-methacetin breath test for quantitative liver function testing. Z Gastroenterol 35, 609–614 (1997).
- Goetze, O. et al. ¹³C-methacetin breath test as a quantitative liver function test in patients with chronic hepatitis C infection: continuous automatic molecular correlation spectroscopy compared to isotopic ratio mass spectrometry. Aliment. Pharmacol. Ther. 26, 305–311 (2007).
- 11. Lock, J. F. et al. Initial liver graft function is a reliable predictor of tacrolimus trough levels during the first post-transplant week. Clin Transplant 25, 436–443 (2011).

12. Stockmann, M. et al. How to define initial poor graft function after liver transplantation? - a new functional definition by the LiMAx test. Transpl. Int. 23, 1023–1032 (2010).

- 13. Kasicka-Jonderko, A., Loska, D., Jonderko, K., Kaminska, M. & Błonska-Fajfrowska, B. Interference of acute cigarette smoking with [13C]methacetin breath test. Isotopes Environ Health Stud 47, 34–41 (2011).
- 14. Riecke, B., Neuhaus, P. & Stockmann, M. Major influence of oxygen supply on ¹³CO₂:¹²CO₂ ratio measurement by nondispersive isotope-selective infrared spectroscopy. Helicobacter 10, 620–622 (2005).
- 15. Lane, E. A. & Parashos, I. Drug pharmacokinetics and the carbon dioxide breath test. J Pharmacokinet Biopharm 14, 29–49 (1986).
- 16. Paul, M. Reference Values Internal Data, Done at University of Erlangen. (1998).
- 17. Dinesen, L. et al. ¹³C-methacetin-breath test compared to also noninvasive biochemical blood tests in predicting hepatic fibrosis and cirrhosis in chronic hepatitis C. Dig Liver Dis 40, 743–748 (2008).

¹³C-L-Methionine Breath Test

¹³C-L-methionine

Molecular weight:	150.2 g/mol
Enrichment:	99 %
Labeled C-atoms:	1
Dosage:	75 mg

Metabolic principle

Methionine is an essential amino acid, metabolized in the liver through two major pathways: transamination and transmethylation. Transmethylation is the predominating metabolic pathway by which methionine is normally converted to S-adenosyl-L-methionine (SAM) and which is used as a cofactor by methyltransferases to transfer the ¹³C-methyl group to different target molecules (methylation). However, the major pathway to remove excess methionine and for the transfer of its methyl group is via sarcosine production, which in this instance generates ¹³C-sarcosine. The labeled sarcosine is oxidized by sarcosine dehydrogenase to produce ¹³C-formaldehyde in the mitochondria which is further oxidized to ¹³CO₂ and expired. Since the oxidation of sarcosine occurs in the mitochondria of the liver¹, ¹³C-methionine can be used to evaluate the oxidative capacity of the liver². This test is therefore a good measure of the hepatic metabolic capacity.3-5

Applications of ¹³C-L-Methionine Breath Test

The ¹³C-L-Methionine Breath Test is a non-invasive diagnostic test to assess *in vivo* hepatic mitochondrial function. Dysfunction of hepatic mitochondria is associated with several chronic liver diseases and the

test can be applied to investigate drug-related acute liver toxicity^{6,7}, ethanol-induced liver oxidative stress⁸, impaired hepatic mitochondrial oxidation in liver steatosis such as non-alcoholic fatty liver disease (NAFLD) or cirrhosis^{4,9}.

The patient should have fasted for 8 hours prior to the test. Smoking should also be avoided at least one hour prior to the test¹⁰. The patient should not drink carbonated water or soft drinks prior to the test since that might interfere with the results. In addition, oxygen supplementation should be avoided because increased oxygen content in exhaled breath can influence ¹³CO₂ measurement by NDIRS¹¹.

Test Performance Procedure (see IRIS® Operating Manual for additional information)

- 1. Collect zero (basal) breath sample as described in the manual.
- Patient takes ¹³C-L-Methionine (75 mg) dissolved in water (100 ml).
- 3. Collect additional breath samples as shown below (Table 2).
- 4. Analyze all 10 breath samples with IRIS®-3 or IRIS®-Doc.

#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag	Bag
0 min	10 min	15 min	20 min	25 min	30 min	40 min	60 min	90 min	120 min

Table 1: ¹³C-L-Methionine Breath Test Sample Collection

Fig. 1,2: Example of ¹³C-Methionine Breath Test, Dose/h curve and % Cum Dose, (Armuzzi et al., 2000⁸)

Results and interpretation

In healthy subjects, a peak in the exhaled Dose/h of labeled CO_2 is to be expected after 30 to 60 minutes (see Figure 1). According to published values by Armuzzi *et al.*' the cumulative dose in healthy controls after 120 minutes reaches $6.07\pm0.46\%^8$ whereas control groups in the following studies also showed slightly increased values (e.g. cumulative dose after 90 minutes: $7.16\% \pm 1.91\%$; see Stüwe et al., 2013^{12}). In general, the more severe the liver disease, the lower the % cumulative dose after 90 or 120 minutes.^{4,7,8}

In another study by Banasch *et al.* specific cut-off values for the cumulative dose at 90 minutes to assess nonalcoholic steatohepatitis and fibrosis stage 0-1 versus fibrosis stage 2-3 in a NAFLD cohort have been calculated.

	Cut-off
non-alcoholic steatohepatitis (NASH) vs. non-NASH	< 4.20 %
Fibrosis stage 0-1 vs. Fibrosis stage 2-3 (within	< 3.65 %
NAFLD cohort]	

Table 3: Cut-off values for non-alcoholic steatohepatitis (NASH) and mild vs. severe fibrosis in a NAFLD cohort according to Banasch *et al.*, 2011⁴

- 1. Frisell, W. R., Cronin, J. R. & Mackenzie, C. G. Coupled flavoenzymes in mitochondrial oxidation of N-methyl groups. J. Biol. Chem. 237, 2975–2980 (1962).
- 2. Candelli, M. et al. 13C-breath tests in the study of mitochondrial liver function. Eur Rev Med Pharmacol Sci 8, 23–31 (2004).
- Milazzo, L. *et al.* [13C]Methionine breath test: a novel method to detect antiretroviral drug-related mitochondrial toxicity. J. Antimicrob. Chemother. 55, 84–89 (2005).
 Banasch, M., Ellrichmann, M., Tannapfel, A., Schmidt, W. E. & Goetze, O. The non-invasive (13)C-methionine breath test detects hepatic mitochondrial
- dysfunction as a marker of disease activity in non-alcoholic steatohepatitis. Eur. J. Med. Res. 16, 258–264 (2011).
- 5. Candelli, M. et al. 13C-methionine breath tests for mitochondrial liver function assessment. Eur Rev Med Pharmacol Sci 12, 245–249 (2008).
- Spahr, L. et al. Acute valproate-associated microvesicular steatosis: could the [13C]methionine breath test be useful to assess liver mitochondrial function? Dig. Dis. Sci. 46, 2758–2761 (2001).
- Banasch, M. et al. Impact of antiretroviral treatment on (13) C-methionine metabolism as a marker of hepatic mitochondrial function: a longitudinal study. HIV Med. 12, 40–45 (2011).
- 8. Armuzzi, A. et al. Non-Invasive assessment of human hepatic mitochondrial function through the 13C-methionine breath test. Scand. J. Gastroenterol. 35, 650–653 (2000).
- 9. Spahr, L. et al. Impaired hepatic mitochondrial oxidation using the 13C-methionine breath test in patients with macrovesicular steatosis and patients with cirrhosis. Med. Sci. Monit. 9, CR6–11 (2003).
- 10. Kasicka-Jonderko, A., Loska, D., Jonderko, K., Kaminska, M. & Błonska-Fajfrowska, B. Interference of acute cigarette smoking with [13C]methacetin breath test. Isotopes Environ Health Stud 47, 34–41 (2011).
- 11. Riecke, B., Neuhaus, P. & Stockmann, M. Major influence of oxygen supply on 13CO2:12CO2 ratio measurement by nondispersive isotope-selective infrared spectroscopy. Helicobacter 10, 620–622 (2005).
- 12. Stüwe, S. H. et al. Hepatic mitochondrial dysfunction in manifest and premanifest Huntington disease. Neurology 80, 743–746 (2013).

¹³C-Sodium-Acetate Breath Test

¹³C-Sodium-Acetate

Molecular weight: Enrichment: Labeled C-atoms: Dosage: 145.21 g/mol 99 % 1 75 mg

Metabolic principle

¹³C-Sodium-Acetate is administered together with a liquid or semi-solid test meal. After passing through the stomach, where it is not absorbable, it is absorbed in the small intestine and metabolized in the liver¹. Whilst some of the labeled carbon is incorporated in different metabolic pathways, about 50 % enters the body's bicarbonate pool and is exhaled². As the rate-limiting step in this process is the stomach-emptying rate, this test is a reliable application to assess liquid gastric emptying^{3,4}.

Applications of ¹³C-Sodium-Acetate Breath Test

The ¹³C-Sodium-Acetate Breath Test is very useful for the investigation of functional dyspepsia and autonomic diabetic neuropathy⁵. Gastroparesis has also been shown to be associated with functional gastrointestinal^{6,7} and inflammatory disorders of the gastrointestinal tract⁸.

The patient should have fasted for 10 hours prior to the

test. The patient should not drink carbonated water or soft drinks prior to the test since that might interfere with the results. In addition, oxygen supplementation should be avoided because increased oxygen content in exhaled breath can influence ${}^{13}CO_2$ measurement by NDIRS⁹.

Test Performance Procedure (see IRIS[®] Operating Manual for additional information)

- 1. Collect zero (basal) breath sample as described in manual.
- 2. Enter patient height and weight into the IRIS®-3 or IRIS®-Doc Software.
- Patient takes ¹³C-Sodium-Acetate (75 mg) dissolved in a liquid or semi-solid test-meal with about 250 kcal (e.g. 200 ml Fresubin[®], Fresenius Kabi AG, Switzerland)
- 4. Collect breath samples as shown below (Table 1).
- 5. Analyze all 13 breath samples with IRIS®-3 or IRIS®-Doc.

#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13
Bag												
0	15	30	45	60	75	90	105	120	150	180	210	240
min												

Table 1: ¹³C-Sodium-Acetate Test Sample Collection

Fig. 1: Example of ¹³C-Sodium-Acetate gastric emptying breath test, Dose/h curve

Results and interpretation

Gastric emptying parameters are assessed by calculation of the half-emptying time $(T_{1/2B})$, the lag phase (T_{lagB}) and the gastric emptying coefficient (GEC), which have been introduced and validated against scintigraphy by Ghoos *et al*¹⁰. This method is still the most frequently applied method, although different analytical methods are currently under validation. These parameters are estimated by non-linear regression analysis directly with the IRIS®-3 or IRIS®-Doc Software (please refer to the manual). As the results are dependent on the test meal, it is strongly recommended that each laboratory establishes its own reference values. For semi-solid test meals, Braden *et al.* found cut-off values of 106 minutes (mean + 2 SD) for the half-emptying time and 55 minutes (mean + 2 SD) for the peak excretion in 20 healthy patients³. Another study by Braden *et al.* resulted in half-emptying times of 90 minutes as cut-off value in children¹¹. In 2006, Hauser *et al.* found median values of 81 minutes for T_{1/2B} and 47 minutes for T_{lagB} with a liquid test meal in children¹².

- Goetze, O. et al. Effects of postgastric ¹³C-acetate processing on measurement of gastric emptying: a systematic investigation in health. Neurogastroenterol. Motil. 21, 1047–e85 (2009).
- Sanaka, M. & Nakada, K. Stable isotope breath tests for assessing gastric emptying: A comprehensive review. J Smooth Muscle Res 46, 267–280 (2010).
 Braden, B. et al. The [13C]acetate breath test accurately reflects gastric emptying of liquids in both liquid and semisolid test meals. Gastroenterology 108, 1048–1055 (1995).
- Mossi, S. et al. Gastric emptying of liquid meals measured noninvasively in humans with [13C]acetate breath test. Dig. Dis. Sci. 39, 1075–1095 (1994).
- 5. Braden, B., Lembcke, B., Kuker, W. & Caspary, W. F. ¹³C-breath tests: current state of the art and future directions. Dig Liver Dis 39, 795–805 (2007).
- Caballero-Plasencia, A. M., Valenzuela-Barranco, M., Herrerías-Gutiérrez, J. M. & Esteban-Carretero, J. M. Altered gastric emptying in patients with irritable bowel syndrome. Eur J Nucl Med 26, 404–409 (1999).
- Evans, P. R., Bak, Y. T., Shuter, B., Hoschl, R. & Kellow, J. E. Gastroparesis and small bowel dysmotility in irritable bowel syndrome. Dig. Dis. Sci. 42, 2087–2093 (1997).
- Keller, J., Beglinger, C., Holst, J. J., Andresen, V. & Layer, P. Mechanisms of gastric emptying disturbances in chronic and acute inflammation of the distal gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G861–868 (2009).
- Riecke, B., Neuhaus, P. & Stockmann, M. Major influence of oxygen supply on ¹³CO₂:¹²CO₂ ratio measurement by nondispersive isotope-selective infrared spectroscopy. Helicobacter 10, 620–622 (2005).
- 10. Ghoos, Y. F. et al. Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test. Gastroenterology 104, 1640–1647 (1993).
- 11. Braden, B. et al. Measuring gastric emptying of semisolids in children using the ¹³C-acetate breath test: a validation study. Dig Liver Dis 36, 260–264 (2004).
- 12. Hauser, B. et al. Variability of the ¹³C-acetate breath test for gastric emptying of liquids in healthy children. J. Pediatr. Gastroenterol. Nutr. 42, 392–397 (2006).

¹³C-Sodium-Octanoate and ¹³C-Octanoic Acid Breath Test

¹³ C-Sodium-Octanoate	Molecular weight:	167.2 g/mol
0	Enrichment:	99 %
\downarrow \sim \sim	Labeled C-atoms:	1
	Dosage:	100 mg
Na ⁺		
¹³ C-Octanoic Acid	Molecular weight:	145.21 g/mol
	Enrichment:	99 %
O U	Labeled C-atoms:	1
но	Dosage:	91 mg

Metabolic principle

¹³C-Sodium-octanoate or ¹³C-Octanoic acid is administered together with solid test meals to assess the gastric emptying. Labeled octanoic acid is most commonly administered in egg yolk, into which it can be injected before baking^{1,2}. After passing through the stomach, it is absorbed in the small intestine and catabolized in the liver³. Whilst some of the labeled carbon is incorporated into different metabolic pathways, about 50 % enters the body's bicarbonate pool and is exhaled⁴. As the rate-limiting step in this process is the stomach-emptying rate, this test is a reliable application to assess solid gastric emptying^{5–7}. Whether ¹³C-sodium-octanoate or ¹³C-octanoic acid is used is a matter of feasibility.

Applications of ¹³C-Sodium-Octanoate Breath Test

The ¹³C-Sodium-Octanoate Breath Test is very useful for the investigation of functional dyspepsia and autonomic diabetic neuropathy⁸. Gastroparesis has also been shown to be related to irritable bowel syndrome (IBS)^{9,10} and inflammation of the distal gastrointestinal tract¹¹. The patient should have fasted for 10 hours prior to the test. The patient should not drink carbonated water or soft drinks prior to the test since that might interfere with the results. In addition, oxygen supplementation should be avoided because increased oxygen content in exhaled breath can influence ¹³CO, measurement by NDIRS¹².

Test Performance Procedure (see IRIS® Operating Manual for additional information)

- Mix an egg with 100 mg of ¹³C-sodium-octanoate or inject 91 mg of ¹³C-octanoic acid into an egg yolk, mix it with egg white and bake. Serve it with 60 g of white bread, 5 g of margarine and 150ml of water (14 g of protein, 26 g of carbohydrate and 9 g of fat, 250 kcal)¹³.
- 2. Collect zero (basal) breath sample as described in manual.
- Enter patient height and weight into the IRIS[®]-3 or IRIS[®]-Doc Software.
- 4. Allow patient to eat the prepared egg meal.
- 5. Collect breath samples as shown below (Table 1).
- 6. Analyze all 13 breath samples with IRIS®-3 or IRIS®-Doc.

#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13
Bag												
0	15	30	45	60	75	90	105	120	150	180	210	240
min												

Table 1: ¹³C-Sodium-Octanoate Test Sample Collection

Fig. 1: Example of ¹³C-Sodium-Octanoate gastric emptying breath test, Dose/h curve

Results and interpretation

Gastric emptying parameters are assessed by calculation of the half-emptying time ($T_{1/2B}$), the lag phase (T_{lagB}) and the gastric emptying coefficient (GEC), which have been introduced and validated against scintigraphy by Ghoos *et al*¹³. This method is still the most frequently applied method, although different analytical methods are currently under validation. These parameters are estimated by non-linear regression analysis directly with the IRIS[®]-3 or IRIS[®]-Doc Software (please refer to the manual).

As the results are dependent on the test set-up – especially the calories of the provided meal - and the

population, it is strongly recommended that each laboratory establishes its own reference values. For solid test meals, Delbende *et al.* found a cut-off value for T_{1/28} of 124 minutes compared to scintigraphy for diagnosis of delayed gastric emptying⁶. Normal values calculated and corrected with scintigraphy by Ghoos *et al.* are for T_{1/28} = 72 ± 22 minutes and T_{lag8} = 32 ± 20 minutes for a test meal of 250 kcal.¹³. Delbende and Ghoos adjusted to the scintigraphy by subtraction of 67 minutes and 66 minutes, respectively. Recommended cut-off values for the breath test result are 130 minutes for T_{lag8} and 200 minutes for T_{1/28}¹⁴.

- 1. Maes, B. D. et al. [*C]octanoic acid breath test to measure gastric emptying rate of solids. Dig. Dis. Sci. 39, 104S-106S (1994)
- Maes, B. D., Geypens, B. J., Ghoos, Y. F., Hiele, M. I. & Rutgeerts, P. J. ¹³C-Octanoic acid breath test for gastric emptying rate of solids. Gastroenterology 114, 856-859 (1998)
- 3. Parkman, H. P. et al. Gastroparesis and functional dyspepsia: excerpts from the AGA/ANMS meeting. Neurogastroenterol. Motil. 22, 113-133 (2010).
- 4. Sanaka, M. & Nakada, K. Stable isotope breath tests for assessing gastric emptying: A comprehensive review. J Smooth Muscle Res 46, 267-280 (2010)
- Keller, J., Andresen, V., Wolter, J., Layer, P. & Camilleri, M. Influence of clinical parameters on the results of ¹³C-octanoic acid breath tests: examination of different mathematical models in a large patient cohort. Neurogastroenterol. Motil. 21, 1039-e83 (2009)
- 6. Delbende, B. et al. ¹³C-octanoic acid breath test for gastric emptying measurement. Eur J Gastroenterol Hepatol 12, 8591 (2000).
- Lee, J. S. et al. Toward office-based measurement of gastric emptying in symptomatic diabetics using [13C]octanoic acid breath test. Am. J. Gastroenterol. 95, 2751-2761 (2000)
- 8. Braden, B., Lembcke, B., Kuker, W. & Caspary, W. F. ¹³C-breath tests: current state of the art and future directions. Dig Liver Dis 39, 795-805 (2007)
- 9. Caballero-Plasencia, A. M., Valenzuela-Barranco, M., HerrerHer-GutirHerrer, HerrerBarrancoCarretero, J. M. Altered gastric emptying in patients with irritable bowel syndrome. Eur J Nucl Med 26, 404-409 (1999)
- 10. Evans, P. R., Bak, Y. T., Shuter, B., Hoschl, R. & Kellow, J. E. Gastroparesis and small bowel dysmotility in irritable bowel syndrome. Dig. Dis. Sci. 42, 2087-2093 (1997).
- 11. Keller, J., Beglinger, C., Holst, J. J., Andresen, V. & Layer, P. Mechanisms of gastric emptying disturbances in chronic and acute inflammation of the distal gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G861-868 (2009).
- Riecke, B., Neuhaus, P. & Stockmann, M. Major influence of oxygen supply on ¹³CO₂:¹²CO₂ ratio measurement by nondispersive isotope-selective infrared spectroscopy. Helicobacter 10, 620-622 (2005).
- 13. Ghoos, Y. F. et al. Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test. Gastroenterology 104, 1640-1647 (1993).
- Keller, J., Franke, A., Storr, M., Wiedbrauck, F. & Schirra, J. [Clinically relevant breath tests in gastroenterological diagnostics--recommendations of the German Society for Neurogastroenterology and Motility as well as the German Society for Digestive and Metabolic Diseases]. Z Gastroenterol 43, 1071-1090 (2005).

¹³C-Mixed Triglyceride Breath Test

¹³C-Mixed Triglyceride

¹³C-Mixed Triglyceride consists of a Triglyceride containing two Stearic Acid molecules and one Octanoic Acid molecule. The Octanoic Acid molecule is labeled with ¹³C at the carboxyl carbon.

Molecular weight:
Enrichment:
Labeled C-atoms:
Dosage:

752.0 g/mol 99 % 1 150 mg

Metabolic principle

1,3-distearyl-2-{carboxyl-¹³C}octanoylglycerol, the socalled ¹³C-Mixed Triglyceride passes through the stomach and is digested by lipase activity in the duodenum¹. The two distearyl groups have to be hydrolyzed by pancreatic lipase before absorption and metabolism of the ¹³C-octanoyl monoglyceride². Thus, the oxidation to ¹³CO₂ is dependent on the rate-limiting step of hydrolysis of the fatty acids in positions 1 and 3³.

Applications of ¹³C-Mixed Triglyceride Breath Test

The ¹³C-Mixed Triglyceride Breath Test assesses duodenal pancreatic lipase activity. It is therefore useful for the investigation of severe exocrine pancreatic insufficiency^{4,5}. If applied under strict conditions even mild to moderate forms can be assessed with high sensitivity and specificity⁶.

The patient should have fasted for 10 hours prior to the

test. The patient must not drink carbonated water or soft

drinks prior to the test since that might interfere with the results. In addition oxygen supplementation should be avoided because increased oxygen content in exhaled breath can influence ¹³CO₂ measurement by NDIRS⁷.

Test Performance Procedure (see IRIS® Operating Manual for additional information)

- Mix 150 mg of ¹³C-Mixed Triglyceride with 0.25 g of butter per kg body weight and prepare it with 100 g of bread.
- 2. Collect zero (basal) breath sample as described in manual.
- 3. Enter patient height and weight into the IRIS[®]-3 or IRIS[®]-Doc Software.
- 4. Allow the patient to eat the prepared bread.
- 5. Collect breath samples as shown below (Table 1).
- Analyze all 13 breath samples with IRIS®-3 or IRIS®-Doc.

#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13
Bag												
0	30	60	90	120	150	180	210	240	270	300	330	360
min												

Table 1: ¹³C-Mixed Triglyceride Test Sample Collection

Fig. 1: Example of ¹³C-Mixed Triglyceride breath test, Dose/h [%] curve (see Löser *et al.*⁵)

Fig. 2: Example of ¹³C-Mixed Triglyceride breath test, cum.dose (%) curve (see Löser *et al.*⁵)

Results and interpretation

Pancreatic function is assessed by the 6 hour cumulative ¹³CO₂ excretion. This can be calculated by the IRIS[®]-Software if the correct values for height and weight are entered. Vantrappen *et al.* found normal values to be at 35.6 % \pm 2.8 %⁴. Another study by Swart *et al.* resulted in a normal value of 33.6 % \pm 4.6 %¹. For detection of disease-diminished lipase output Vantrappen *et al.* suggested a cut-off value of 22 % cumulative CO₂ after 6 hours (sensitivity 0.89, specificity 0.81)⁴.

The two figures above show examples of curves for a 5-hour test set-up, taken from Löser *et al.*⁵.

As the results are dependent on the test set-up and the population, it is strongly recommended that each laboratory establishes its own reference values.

- 1. Swart, G. R. et al. Evaluation studies of the ¹³C-mixed triglyceride breath test in healthy controls and adult cystic fibrosis patients with exocrine pancreatic insufficiency. Digestion 58, 415–420 (1997).
- Van Dijk-van Aalst, K. et al. ¹³C mixed triglyceride breath test: a noninvasive method to assess lipase activity in children. J. Pediatr. Gastroenterol. Nutr. 32, 579–585 (2001).
- 3. Ghoos, Y. F., Vantrappen, G. R., Rutgeerts, P. J. & Schurmans, P. C. A mixed-triglyceride breath test for intraluminal fat digestive activity. Digestion 22, 239–247 (1981).
- Vantrappen, G. R., Rutgeerts, P. J., Ghoos, Y. F. & Hiele, M. I. Mixed triglyceride breath test: a noninvasive test of pancreatic lipase activity in the duodenum. Gastroenterology 96, 1126–1134 (1989).
- Löser, C., Brauer, C., Aygen, S., Hennemann, O. & Fölsch, U. R. Comparative clinical evaluation of the ¹³C-mixed triglyceride breath test as an indirect pancreatic function test. Scand. J. Gastroenterol. 33, 327–334 (1998).
- Keller, J., Brückel, S., Jahr, C. & Layer, P. A modified ¹³C-mixed triglyceride breath test detects moderate pancreatic exocrine insufficiency. Pancreas 40, 1201–1205 (2011).
- Riecke, B., Neuhaus, P. & Stockmann, M. Major influence of oxygen supply on ¹³CO₂:¹²CO₂ ratio measurement by nondispersive isotope-selective infrared spectroscopy. Helicobacter 10, 620–622 (2005).

Kibion AB Phone: +46 18 780 88 00 · Fax: +46 18 780 88 88 P.O. Box 303, SE-751 05 Uppsala, Sweden info@kibion.com · www.kibion.com